Logic Masters Deutschland e.V.

Half Circles

(Eingestellt am 10. September 2025, 20:51 Uhr von Prof.Dori)

Half Circles

Rules:

Normal sudoku rules apply.

A digit N placed inside a circle or semicircle indicates that exactly N full circles in the grid contain the digit N.

Two semicircles together count as one full circle. For example, if there are four semicircles containing the digit 5 and three full circles containing the digit 5, then the total count is 2+3=5 circles with the digit 5.

CTC

Lösungscode: Row 1.

Zuletzt geändert am 10. September 2025, 20:53 Uhr

Gelöst von Adaki, mathpesto, SKORP17, Qodec, johnreid, Jade_pv, Zaragan, Gnubeutel, NorthCoastAsher, pazqo, maniacaljackal, Grumpy, marajade, josemadre, Avron, flyjim, residentholy3, drmegadude, Erniewong, ... Slumped_5, sze, Jastucreudo, Debrutsid, Supertaster, katze, cygne, NEWS, asynchronous, R0X, RailMan, me and the paws, SanFranSam, metacom, jgarber, jubengo, ringel, Sherpa, Exigus, CaseyM, maxeddie
Komplette Liste

Kommentare

Gestern, 21:15 Uhr von SanFranSam
I don't know if i solved it as much as i intuited it. ;)

Gestern, 14:52 Uhr von SirMoose
I really liked the addition of semi circles in this ruleset, definitely 1 star, but I would absolutely love to see what this constraint could offer in tougher puzzles!

Gestern, 12:47 Uhr von Franjo
Funny puzzle! Thank you very much for creating and sharing.

Gestern, 11:13 Uhr von marty_sears
Really brilliant twist on counting circles, and nice aesthetics too :)

Gestern, 11:02 Uhr von Ol-Jay
This was really awesome and brilliant, I loved the flow!

Gestern, 07:30 Uhr von Karitsu
This was fascinating. I really want someone to do a proof video on why it works the way it does.

Gestern, 02:50 Uhr von josemadre
So great!

Gestern, 02:47 Uhr von marajade
Beautiful! I loved how this unfolded.

Gestern, 00:01 Uhr von NorthCoastAsher
Very simple puzzle, but a great constraint!

am 10. September 2025, 22:40 Uhr von Qodec
Too good to be true. Someone please wake me up?

am 10. September 2025, 21:22 Uhr von mathpesto
Brilliant!

Schwierigkeit:1
Bewertung:95 %
Gelöst:61 mal
Beobachtet:0 mal
ID:000P4J

Rätselvariante

Lösung abgeben

Lösungscode:

Anmelden