Logic Masters Deutschland e.V.

Top Right Boi

(Eingestellt am 21. Juni 2025, 12:00 Uhr von vitaminz)

Please leave a comment if you enjoy it! If you would like to solve a puzzle whose arrows’ aesthetics are more standard (but decidedly less top, less right, and less boi), you can do so here. You can find a version with the same arcs but lighter arrows here. Lines were drawn using Phil’s line tool available here.
Play on SudokuPad
RULES:

Normal Sudoku rules apply.

Anti-Knight: Digits a knight's move (in chess) apart cannot contain the same digit.

Arrows: Digits on an arrow sum to the digit in the attached circle.

Lösungscode: Row 1

Zuletzt geändert am 22. Juni 2025, 23:33 Uhr

Gelöst von aqjhs, ViKingPrime, luuu, Sotehr, by81996672, wilsig, Scojo, Agent, SKORP17, karlmortenlunna, sedici, sujoyku, zeniko, QuiltyAsCharged, jqhc, giladooshlon, saxdaddyj, MSDOS, MaxSmartable, annnz, ... b413x, paranoid, DubiousMobius, YoshiKyon, bcreturnee, McMingus, MB_Cyclist, benisjammin, Tacocat, Krisonium, dustpan, Firebird, jalebc, dumediat, grunde, Vodakhan , sorryimLate, severinus
Komplette Liste

Kommentare

am 2. Juli 2025, 19:12 Uhr von dumediat
I loved the geometry involved with this puzzle, excellent implementation of the anti-knight constraint!

am 26. Juni 2025, 01:16 Uhr von DubiousMobius
Very lovely anti-knight logic here. There were a couple recurring structures in the solve that were a delight to see echoing one another. Great puzzle!

am 22. Juni 2025, 23:33 Uhr von vitaminz
Added lighter arrow grid

am 22. Juni 2025, 17:34 Uhr von TopRightBoi
This is the best puzzle I have ever solved.

am 21. Juni 2025, 23:33 Uhr von QuiltyAsCharged
Very difficult, at least for me!

am 21. Juni 2025, 21:54 Uhr von sujoyku
Very nice anti-knight boi! Thank you, vitaminz!

am 21. Juni 2025, 12:38 Uhr von ViKingPrime
There were a few steps in this that may very well be my favourite of any anti-knight puzzle ever. Excellent use of each constraint.

Schwierigkeit:3
Bewertung:90 %
Gelöst:53 mal
Beobachtet:1 mal
ID:000NVM

Lösung abgeben

Lösungscode:

Anmelden