Logic Masters Deutschland e.V.

Sandstone ambivalence

(Eingestellt am 9. Juni 2025, 05:30 Uhr von NicoD)

Sandstone ambivalence by Nicolas Duhail.

Rules
Normal sudoku rules apply.
Along orange lines, adjacent digits differ by at least 4.
The sum of the digits along an arrow is equal to the digit in the connected circle.

Play this puzzle on SudokuPad

Lösungscode: Row 7

Zuletzt geändert -

Gelöst von Krisonium, TJ , ccotreau, StevenS, selador31, keenbowl, Chelo, ludvigr04, SKORP17, tuturitu, Bjd, mabjim007, ppdswiss, IrishDevil, dickey, Shmartus, Jesper, brimmy, keesh, giladooshlon, Piff, Exigus, ... MalkoMann2, dipiz, Silentdodo, lianarox, MouseDragons, SirWoezel, Corey115, Julianl, pepu273, Ramez, saturnic, Nagesh, MontanaPearl, Snookerfan, b413x, virus_dave, mcs131313, joelth, by81996672
Komplette Liste

Kommentare

Zuletzt geändert am 16. Juni 2025, 04:54 Uhr

am 15. Juni 2025, 22:56 Uhr von virus_dave
Very enjoyable! Each step took me a bit of new thought and some time to reason through in the first half, but it flowed very nicely.
-----
ND: Great, nice to read that!

Zuletzt geändert am 13. Juni 2025, 22:33 Uhr

am 13. Juni 2025, 20:14 Uhr von Snookerfan
Fabulous puzzle, especially the hard break-in. Smooth afterwards. Thank you
-----
ND: You are welcome, I am glad I still manage to stump you!

Zuletzt geändert am 10. Juni 2025, 14:05 Uhr

am 10. Juni 2025, 13:03 Uhr von Franjo
Beautiful puzzle! Thank you very much for creating and sharing.
-----
ND: You are welcome!

Zuletzt geändert am 10. Juni 2025, 12:35 Uhr

am 10. Juni 2025, 12:04 Uhr von Snaques
Loved it. The Dutch whispers were surprisingly effective in this one. There were couple of really nice things to discover.
-----
ND: Thank you for solving!

Zuletzt geändert am 10. Juni 2025, 00:48 Uhr

am 9. Juni 2025, 22:11 Uhr von Exigus
Great use of Dutch whispers. Thanks!
-----
ND: You are welcome, I like this constraint!

Zuletzt geändert am 9. Juni 2025, 19:31 Uhr

am 9. Juni 2025, 19:03 Uhr von ppdswiss
Took the plunge on a coin toss as I knew a certain number had to go in one of two cells . . . and the whole puzzle practically filled itself in from there. One day I will learn to see why the other cell couldn't have been that number but for now I'll just keep on filling in until it clearly goes wrong then back out all the way!!!
-----
ND: Thanks for solving!
Keep looking and you will eventually find the logic!

Schwierigkeit:3
Bewertung:95 %
Gelöst:62 mal
Beobachtet:1 mal
ID:000NOW

Lösung abgeben

Lösungscode:

Anmelden