Japanese Dominos

(Eingestellt am 14. März 2024, 15:59 Uhr von KNT)

Place the complete set of dominos from 1-1 to 9-9 in the grid once each. Digits must not repeat in a row or column, unless the repeated digits are contained in the same domino.

Clues outside the grid give the sum of numbers on dominos between empty cells in the correct order.

Lösungscode: Row 6, Column 6, S for empty cell

Gelöst von Jesper, Bellsita, wooferzfg, Jakhob, Niverio, Myxo, Snookerfan, Koalagator2, akamchinjir, Vebby, smartmagpie, Mr_tn, zzw, RJBlarmo, ManuH, marcmees, ibag, h5663454, Paletron, jkuo7, tuturitu, MagnusJosefsson, AnnaTh, lupo, ONeill, misko, Alex, Christounet, logiclox, wildbush7, Gliperal, rmn, quantumquark1, Uhu, Nensche777, ascension, Tom-dz, madhupt
Komplette Liste

Kommentare

What a brutally challenging puzzle! After the break-in also it never gave up and till the very last when the last two dominoes fell in place, this just did not relent. Each digit was hard fought. Made so many mistakes which seemed so silly in hindsight. The discovery of logic at each stage was so satisfying and appeared very obvious later on. Thanks a lot for sharing yet another masterpiece.

am 4. April 2024, 14:41 Uhr von wildbush7
Magnificent puzzle! Fraught with danger throughout - had to backtrack several times to fix some careless mistakes.

am 28. März 2024, 22:06 Uhr von Christounet
Phew, I think it’s been a long time since I have made so many mistakes in a single puzzle ! Kept overlooking some possibilities at every turn, and of course I always took the wrong turn... But it was very satifying to finally see all the dominos fall into place ! Thanks :)

am 27. März 2024, 11:08 Uhr von Alex
amazing!

am 23. März 2024, 14:46 Uhr von ONeill
Very nice and tough, thanks

am 19. März 2024, 14:41 Uhr von AnnaTh
Again such a brilliant puzzle. I enjoyed every single step

am 19. März 2024, 13:22 Uhr von MagnusJosefsson
Wonderful puzzle! Very challenging and interesting all the way to the end.

am 17. März 2024, 10:44 Uhr von ibag
Great! A true masterpiece - as usual ... ;-)

am 16. März 2024, 05:21 Uhr von RJBlarmo
Great puzzle, was really challenging for me.

am 15. März 2024, 18:04 Uhr von Piatato
@KNT yeah I just came to the same conclusion. Will figure out why I'm breaking the puzzle, then :-)

am 15. März 2024, 18:01 Uhr von KNT
@Piatato if 1-2 and 2-1 were different dominos, we’d have 81 different dominos to place… two cells each would mean 162 cells of the 144 cell grid are dominos ;)

Zuletzt geändert am 17. März 2024, 00:05 Uhr

am 15. März 2024, 16:40 Uhr von marcmees
Amazing puzzle. Glad I persisted where the solving path got really narrow. Thanks.

am 15. März 2024, 13:04 Uhr von Snookerfan
Superb! Very challenging and fun. Thank you

am 15. März 2024, 11:06 Uhr von Myxo
Ganz toll!

am 15. März 2024, 10:26 Uhr von Niverio
Lots of fun as is standard from you :)

am 15. März 2024, 06:30 Uhr von wooferzfg
Super fun, thanks!

am 14. März 2024, 21:20 Uhr von Jesper
I remember testing this some months back, found it very nice and very challenging!

 Schwierigkeit: Bewertung: 99 % Gelöst: 38 mal Beobachtet: 2 mal ID: 000HB2

Lösungscode: