Logic Masters Deutschland e.V.

10-in-9 sandwich sudoku

(Eingestellt am 26. März 2020, 10:16 Uhr von Nylimb)

This is a variant of a sandwich sudoku, in which some cells contain 2-digit numbers.

Fill the grid with 1-digit and 2-digit numbers, so that every row, column, and 3x3 box contains each of the 10 digits, from 0 to 9, exactly once: Eight cells contain 1-digit numbers, and the other cell contains a 2-digit number (from 10 to 98).

A number next to a row or column gives the sum of all numbers between the largest and smallest numbers in that row or column. (This seems like a natural generalization of the usual sandwich sudoku rule.) For example, if a row contains 4, 1, 5, 8, 2, 7, 60, 3, and 9, then the largest number is 60, the smallest is 1, and the sandwich sum is 5+8+2+7 = 22.

Note that you could reverse the digits of any 2-digit number in the grid (if it doesn't end with 0), without changing the sandwich sums. So for this puzzle, and especially for the solution code, there's an additional rule to avoid such ambiguity: In every 2-digit number the tens digit is larger than the ones digit; e.g. 73 can occur but 37 cannot.

Lösungscode: Column 4 and column 5. Include both digits of the 2-digit numbers.

Zuletzt geändert am 10. Juni 2020, 11:26 Uhr

Gelöst von cdwg2000, ManuH, marcmees, rimodech, Nothere, sf2l, Statistica, Circleconstant314, Realshaggy, Puzzle_Maestro, Player, Julianl, AnnaTh, Mody, Strosahl, HaSe, ch1983, Phistomefel, zuzanina, tuace, zorant, cornuto, kishy72, euklid, Madmahogany, NikolaZ, Uhu, zhergan, Jesper, geronimo92, Narayana, pdebruine, L77059, 9797, ffricke, 97johny, matter, boredduck, Mitchsa, moss, harrison
Komplette Liste


am 26. Juni 2020, 21:25 Uhr von ffricke
Wieder ein sehr gelunges 10 in 9 Sudoku

am 10. Juni 2020, 11:26 Uhr von Nylimb
I'm working to add all relevant tags to my puzzles. For some reason there are 3 different ones for sandwich sudokus, so I've added all 3.

am 13. Mai 2020, 23:08 Uhr von zhergan
Great puzzle. Thanks..

am 5. Mai 2020, 16:10 Uhr von Madmahogany
Brilliant puzzle! Completely different type of thinking needed for this!

am 8. April 2020, 06:53 Uhr von Nylimb
Added 10-in-9 tag.

am 30. März 2020, 11:15 Uhr von ch1983
Thank you very much, great solving experience!

am 30. März 2020, 00:45 Uhr von HaSe

am 29. März 2020, 14:35 Uhr von Mody
Total klasse

am 27. März 2020, 19:04 Uhr von Circleconstant314
Incredible puzzle setting!

am 26. März 2020, 19:38 Uhr von Nothere
Amazing, thank you!

Bewertung:98 %
Gelöst:41 mal
Beobachtet:1 mal

Arithmetikrätsel Sudoku Variante eines Standardrätsels

Lösung abgeben