Logic Masters Deutschland e.V.

Mehrdeutige Rätsel - Dominosuche A

(Eingestellt am 1. April 2017, 14:14 Uhr von lupo)

Gegeben ist ein Rätsel mit zahlreichen Lösungen. Finde zwei Lösungen, die nach einer vorgegebenen Definition (siehe unten) total verschieden sind.

Dominosuche: Zerlege das Feld so in Dominosteine, dass jede Kombination von 1-1 bis 7-7 genau einmal vorkommt. Die Zahlen auf den Dominosteinen sind dabei bereits eingezeichnet.

Jedes Kästchen, das in der einen Lösung zu einem waagerechten Dominostein gehört, gehört in der anderen Lösung zu einem senkrechten Donminostein, und umgekehrt.





Lösungscode: Für jede Zeile von oben nach unten die Anzahl der waagerechten Dominosteine. Die Lösung, deren Code nach lexikographischer Ordnung kleiner ist, zuerst.

Zuletzt geändert -

Gelöst von dm_litv, jirk, pokerke, jessica6, sf2l, adam001, ch1983, tuace, Luigi, saskia-daniela, deu, KlausRG, flaemmchen, AnnaTh, derwolf23, Matt, Joe Average, Alex, Zzzyxas, sandmoppe, ibag, Senor Dingdong, ... Toastbrot, misfit, Nothere, rcg, Mathi, Maginia, habert62, RobertBe, Thomster, Katrin K, rimodech, maeffchen, Errorandy, SP1, rob, Carolin, pwahs, angelasteffen, bob, RALehrer, StefanSch, Julianl
Komplette Liste

Kommentare

Zuletzt geändert am 4. September 2018, 11:51 Uhr

am 4. September 2018, 11:36 Uhr von StefanSch
Die Forderung, dass ein Kästchen zu einem waagerechten und einem senkrechten Dominostein gehören muss, ist sehr einschränkend, damit ergeben sich sehr viel Steine zwangsläufig (unabhängig von den Zahlen in den Kästchen).
Bekommt man ein eindeutiges Rätsel hin, bei dem nur verboten ist, dass ein Kästchen in beiden Rätseln zum selben Dominostein gehört?

Verwendet man diese Regelvariante, dann kommt man im Rätsel auch ziemlich weit. Nur am linken und rechten Rand bleiben zwei 2x2-Kästchen, die nicht eindeutig gelöst werden können (es sind die Steine 2-3,7-2 und 5-3,2-5).

am 1. April 2017, 15:18 Uhr von dm_litv
It's just as boring as the standard "Domino".

Schwierigkeit:1
Bewertung:64 %
Gelöst:72 mal
Beobachtet:0 mal
ID:0002K1

Dominosuche

Lösung abgeben

Lösungscode:

Anmelden