Logic Masters Deutschland e.V.

Halves and Halve Nots (Dynamic Fog Edition)

(Published on 28. September 2025, 22:45 by ViKingPrime)


PUZZLE:

Play on SudokuPad



RULES:

Normal SUDOKU rules apply.

Values along an ARROW sum to the value in its attached circle.

Place HALVER cells into the grid so that there is exactly one Halver cell in each row, column and box; each Halver cell must contain a different digit and the value of a Halver cell is half the value of the contained digit.

In every row and column there is at least one pair of adjacent values in a RATIO of 1:N, wherein 'N' is the row or column number. These values must represent whole numbers (e.g. in row 4, there must be a domino of values such as {1, 4} or {2, 8} but not {0.5, 2}).

The grid is partially covered in dynamic FOG; placing a correct digit lifts fog from its cell and sometimes other cells.

Numbers outside of the grid are provided for tracking purposes only.


INTRODUCTION:

A big thank you to Marty Sears for the encouragement in remastering this puzzle and to Justin Vitanza and gdc for testing. The inclusion of dynamic fog was a huge improvement over the original and helped take a lot of the pain points out of what was otherwise a really interesting constraint. I hope you agree.

Have fun!

...and if you're finding the break-in a challenge, ask yourself where can the modified 1 exist in the grid?


Solution code: The digits along Row 8, left-to-right.

Last changed on on 1. October 2025, 18:09

Solved by SKORP17, MattYDdraig, gdc, Myxo, marty_sears, War, jalebc, jkuo7, zhan, bansalsaab, ole-1995a, lmdemasi, Nell Gwyn, clock, KyubiBoy, dodo, illegel, galgamer, WvdWest, jinkela114514, Clara123, han233ing, JDP678, shika, mausi19la03, yknn
Full list

Comments

on 30. September 2025, 02:19 by lmdemasi
I like this version. Gives you a bit more direction for finding those big deductions.

on 29. September 2025, 02:23 by marty_sears
A very cool update to one of my favourite VikingPrime puzzles

Difficulty:5
Rating:88 %
Solved:26 times
Observed:1 times
ID:000PF7

Puzzle variant Variant combination Online solving tool

Enter solution

Solution code:

Login